Extensions 1→N→G→Q→1 with N=C3:D12 and Q=C22

Direct product G=NxQ with N=C3:D12 and Q=C22
dρLabelID
C22xC3:D1248C2^2xC3:D12288,974

Semidirect products G=N:Q with N=C3:D12 and Q=C22
extensionφ:Q→Out NdρLabelID
C3:D12:1C22 = D12:24D6φ: C22/C1C22 ⊆ Out C3:D12484C3:D12:1C2^2288,955
C3:D12:2C22 = D12:27D6φ: C22/C1C22 ⊆ Out C3:D12244+C3:D12:2C2^2288,956
C3:D12:3C22 = S32xD4φ: C22/C1C22 ⊆ Out C3:D12248+C3:D12:3C2^2288,958
C3:D12:4C22 = S3xD4:2S3φ: C22/C1C22 ⊆ Out C3:D12488-C3:D12:4C2^2288,959
C3:D12:5C22 = Dic6:12D6φ: C22/C1C22 ⊆ Out C3:D12248+C3:D12:5C2^2288,960
C3:D12:6C22 = S3xQ8:3S3φ: C22/C1C22 ⊆ Out C3:D12488+C3:D12:6C2^2288,966
C3:D12:7C22 = C32:2+ 1+4φ: C22/C1C22 ⊆ Out C3:D12244C3:D12:7C2^2288,978
C3:D12:8C22 = C2xS3xD12φ: C22/C2C2 ⊆ Out C3:D1248C3:D12:8C2^2288,951
C3:D12:9C22 = D12:16D6φ: C22/C2C2 ⊆ Out C3:D12488+C3:D12:9C2^2288,968
C3:D12:10C22 = C2xD6.3D6φ: C22/C2C2 ⊆ Out C3:D1248C3:D12:10C2^2288,970
C3:D12:11C22 = C2xD12:S3φ: C22/C2C2 ⊆ Out C3:D1248C3:D12:11C2^2288,944
C3:D12:12C22 = C2xD6.6D6φ: C22/C2C2 ⊆ Out C3:D1248C3:D12:12C2^2288,949
C3:D12:13C22 = S3xC4oD12φ: C22/C2C2 ⊆ Out C3:D12484C3:D12:13C2^2288,953
C3:D12:14C22 = D12:23D6φ: C22/C2C2 ⊆ Out C3:D12244C3:D12:14C2^2288,954
C3:D12:15C22 = D12:12D6φ: C22/C2C2 ⊆ Out C3:D12488-C3:D12:15C2^2288,961
C3:D12:16C22 = D12:13D6φ: C22/C2C2 ⊆ Out C3:D12248+C3:D12:16C2^2288,962
C3:D12:17C22 = C2xS3xC3:D4φ: C22/C2C2 ⊆ Out C3:D1248C3:D12:17C2^2288,976
C3:D12:18C22 = C2xDic3:D6φ: C22/C2C2 ⊆ Out C3:D1224C3:D12:18C2^2288,977
C3:D12:19C22 = C2xD6.D6φ: trivial image48C3:D12:19C2^2288,948

Non-split extensions G=N.Q with N=C3:D12 and Q=C22
extensionφ:Q→Out NdρLabelID
C3:D12.C22 = D12.33D6φ: C22/C1C22 ⊆ Out C3:D12484C3:D12.C2^2288,945
C3:D12.2C22 = Dic6.24D6φ: C22/C2C2 ⊆ Out C3:D12488-C3:D12.2C2^2288,957
C3:D12.3C22 = D12.25D6φ: C22/C2C2 ⊆ Out C3:D12488-C3:D12.3C2^2288,963
C3:D12.4C22 = Dic6.26D6φ: C22/C2C2 ⊆ Out C3:D12488+C3:D12.4C2^2288,964

׿
x
:
Z
F
o
wr
Q
<